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%W "NObPARAMETRIC MAXIMM PENALIZED LIKELIHOOD
%4 ESTIMATION OF A DENSITY FROM ARBITRARILY

RIGHT-CENSORED OBSERVATIONS

Andre M. Lubecke and W. J. Padgett

Department of Mathmatics and Statistics
University of South Carolina

Columbia, South Carolina 29208

Xei? Wor- ad Phrases: M=-mri Zikelihood estimation; Existence
and uni.qeneas; Good and Gaskins' first I'LE; SurvivaZ estimation;
RAdo, censorship; Nonpz'aetric dens ity estimation; ReZioabiZir-.

ABSTRACT
Based on arbitrarily right-ensored observations trom a

probability density function f * the existence and unqueness of

the maximum penalized likelihood estimator (M'LE) of f!' is

proven. In particular, the first MPLE of Good and Gaskins' of a
density defined on [0,-) is shown to exist and to be unique

.- under arbitrary right-censorship. Furthermore, the NPLE is in

the form of an exponential spline with knots at the observed cen-

sored and uncensored data points.

''1. INTRODUCTION

The problem of nonparametric probability density estimation

has been studied for many years. Summaries of results for com-

plete (uncensored) random samples have been listed by Tapia and
Thompson (1978), Vertz and Schneider (1979), and Bean and Tsokos

(1980), for example. Also, a review of results for censored

rop
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samples has been given by Padgett and McNichols (1984). In addi-

tion to its importance in theoretical statistics, nonparametric

density estimation has been used in hazard analysis, life testing,

and reliability, as well as in the areas of nonparametric discrim-

ination and high energy physics (Good and Gaskin, 1971).

One approach to estimating a density function nonparametri-

cally is that of maximum likelihood. Nonparametric maximum like-

lihood estimates of a probability density function do not exist in

general. That is, the likelihood function for a complete sample

is unbounded over the class of all possible densities, However,

by suitably restricting the class of densities, a nonparametric

maximum likelihood estimator (ML.E) may be found within the restric-

ted class. For complete samples, the maximum likelihood estimator

of a density g was given by Barlow, Bartholomew, Brenner and

Brunk (1972) if g was assumed to be either decreasing (nonin-

creasing) or unimodal with known mode. Wegman (1970a,b) assumed

unimodality with unk-nown mode and found the ?M.E of the density and

studied its properties for complete samples. McNichols and Padgert

(1982) studied the nonparametric HLE of monotonic or unimodal den-

sities based on arbitrarily right-censored observations. Even

within the class of decreasing (or unimodal) density functions,

however, when the largest observation was censored, McNichols and

Padgett (1982) had to restrict their estimator to a finite interval

[O,T] where T was an arbitrarily large positive number, greater

than the largest observation.

Another approach to the problem of nonparametric maxim m

likelihood estimation of a density from complete samples was pro-

posed by Good and Gaskins (1971). This method allowed any smooth

integrable function on the interval of interest (a,b) (which may

be finite or infinite) as a possible estimator, but added a

"penalty function" to the likelihood. The penalty function penal-

ized a density for its lack of smoothness, so that a very "rough"

density would have a smaller likelihood than a "smooth" density,

and hence, would not be admissible. De ontricher, Tapia, and

* *. 
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Thompson (1975) showed that the natural mathematical setting for

the solution of the maximum penalized likelihood estimation (MFLE)

problem of Good and Gaskins (1971) was provided by the Sobolev

subspaces of the Hilbert space L2 (R), the square-integrable func-

tions on the real line R. They proved existence and uniqueness

results for the MPLE. Later. Klonias (1982) obtained the strong

consistency of the MPLE of the density function in appropriate

norms. He also derived the "first NPLE of Good and Gaskins" for

the case that the density g has support only on the half line,

essentially by reflecting g around zero and using results for

g having support R.

In this paper we obtain existence and uniqueness results for

the nonparametric MPLE of a density g based on arbitrarily

right-censored observations from g. General results are first

obtained for densities with support S c R and penalty function

€ and then the problem of "Good and Gaskins' first M LE" is con-

sidered for arbitrarily right-censored data observed on R. The

existence and uniqueness results are then obtained for densities

g with only positive support by using a symnetry argument, re-

flecting g about zero, and then utilizing the general results

for support 1. It is also shown that the MWLE is an exponential

spline with knots at the data points.

2, NOTATION AND BASIC DEFINITIONS

Let p c R be a finite or infinite interval and let f

denote a probability density function with support in a. Let
0 , s be n independent identically distributed ran

0 0
variables with common density f . Later, Xi, i0m,69.,n, will

be interpreted as the true survival times of n items or indi-

viduals under observation, where fo will have support in [0,-).

Suppose that U 1,U2,...,Un is a sequence of constants or random
,! 11 0

variables which "censor" Xi, i 1,...,n, on the right. In sur-

viva] analysis or reliability studies, the U 's represent

possible "loss" times of items or individuals from the test.

*1o
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The observed data are denoted by the pairs (Xivi) ,

iinl,...,n, where

Si if

X~ *in{1 0 U) L 0i

10ifXI > Ui

It is desired to obtain the IPLE of fo based on these observa-

tions.
0

In reliability or survival analysis, where f has support

in [0,-), the nature of the censoring depends on the U 's.

() If UV,...,C are fixed constants, the observations are

time truncated. If all U' are equal to the same constant,

then the case of Type I censoring results. (ii) If all00 0
U M X (r), the rth order statistic of 0..0,X 0 then the

situation is that of Type II censoring. (iii) If U 9.*.,Un
constitute a random sample froz a distribution R (usually un-

0 0 (c
known) and are independent of 9..X, then (Xi)

is called a randomly censored sample. See Gill (1980, Ch. 3 and

Ex. 4.1.1) for further discussion. An observed value of (XZi )

Vw ,ill be denoted by (xldi).

By LP (2) we will mean the space of functions v such that

1ffv (t)lPdt <- with norm flvIp u [fSlv(t)fPdt] /p  for p l.

Let B62) be a manifold in L (a).

S-.Following notation similar to that of De Nontricher, Tapia,

and Thompson (1975), let 0 denote a functional #: H(1) * R.

0 Given the arbitrarily right-censored sample (zi,di), i=1,2,...,n,

the #-penalized likelihood of v c H() is defined by

L:.'.-* n di ld

II:,.v - (v~x1 )] [1-v~xi)) exp(-4(v)),d 11"-" i~

where V(z1 )= f-v(t)dt denotes the cumulative distribution

function with density v and $ is the penalty function. By

the maxir penalized likelihood estimator (MPLE) of fo corres-

pending to manifold B(S2) and penalty function , e will mean

any solution to the problem:

-:oV
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maximize L(v) subject to (2.1)

v c H(n), f. v(t)dt - 1, and

v(t) a 0 for all t c Q.

The function L(v) is the censored form of the penalized likeli-

hood of Good and Gaskins (1971).

When H(n) is a Hilbert space, a natural penalty function

to use is 0(v) - Ilvl 2 , where 1111is the norm on H(a). if

no reference is given to * when we are considering the MPLE

corresponding to a Hilbert space H(.Q), it is assumed that 0 is

the square of the norm on H(&Q). A Hilbert space inner product
2will be denoted by <',-> so that <v,v> - IlvIl . When B() is

a Hilbert space, it is a reproducing kernel Hilbert space (RKHS)

if point evaluation is a continuous operation, that is, v - vn
in H(f?) implies that v (t) -o v(t) for all t e 12. See

n
Goffman and Pedrick (1965) for further details.

3. EXISTENCE AND UNIQUETNESS OF AN MPLE

In this section we establish the existence and uniqueness of

a solution to problem (2.1) when H(:) is a RKES. The inner

product on H(2) is defined by <u,v> - fa u(t)v(t)dt for

UV e C(r).

Theorem 3.1. Assume that H(P.) is a RKHS, integration over 12

is a continuous functional, and D is a closed convex subset of

{v C W(A): v(xi) k 0, il,...,nl with the property that D contains

at least one function which is positive at the data points
* 0

Xlt...x n . Then the MPLE of f corresponding to penalty
2

function 0(v) - Ilvil in (2.1) exists in D and is unique,

where I1"11 denotes the norm on B(0.

Proof: Since H(n) is a RKHS, by the continuity property,

for each i1,2,...,n there exists a constant K such that

Iv(x i)I S illl 1 l. It follows that
d 1-d

L(v) - [v(xI)] [l-V( ii )] exp(- I1v III
iml

%



7

-ioi

k 2;..v. exp(- fIvll E- K )0
'.il i-i

vhere k d is the number of uncensgred observations, The

function Q Ak exp(_X2), X > 0, is bounded above so that

L(v) S C, where C is a constant.

Let H - sup{L(v): v e D). From the hypothesis of the

theorem, M > 0. There exists a sequence {vj} c D such that

L(vj) * M as J - -. Also, since Q) * 0 as X -" and L(v)
is bounded, I1v. ! S c for all j, where C1  is a constant.

*Nov, the set {v C H(2): liv!! s C is weakly compact, so {v.1

contains a weakly convergent subsequence also denoted by {vj ).
Let v* denote the weak limit of {v 1. Since H(O?) is a RKHS,

jj
,.'- v (x ) -* v*(x ) for each i-l,2,...,n. The norm is a continuous

convex functional and, hence, is weakly lower semicontinuous.

Thus, lim inf lva ll 1 Iiv*li . Since integration is a continuous

functional by hypothesis,
xi xi

V(x) f (t)dt * v*(t)dt - V*(x )

for all x, i1,...,n. Therefore,

d i 1-di 2
-li 1 [v (x±) d  11-v (X, e.-pC- 11v l1

n d i 1 i 2
s v*(x [v*(xi)] exp(-lv ) L(v*).
1-l

Thus, M S L(v*). Since D is closed and convex, it is weakly

closed, so that v* e D. Therefore, a maximizer of L(v) exists

in D.

Since M > 0, we can consider maximizing J(v) over D,

where

J(v) - In L(v)
• n n

. d1 In v(x ) + I (l-di)lntl-V(xi) <v,v>.
..1N1 i
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The first Frechet derivative of J(v) is (Tapia, 1971)

ndiT(xi) [ v(zi) 1J'(v)(n)- 2,v Yj>i
i- v( ) (1-d ) [-Vx X) - 2cv,r>,

and the second Fr'chet derivative is

2 l-v(x1 )+v2 (xn d 'n (xi) n [1'V xi)

(v () 2 - 1 (l-d)ii(x 1

2<n,n>.

Since J"(v) is negative definite, J is strictly concave by

Proposition 16, page 157 of Tapia and Thompson (1978) and, hence,

can have at most one maximizer on a convex set. Therefore. there

exists a unique solution to (2.1) in D. //

We note that the constraints in (2.1) define a closed convex

subset of {v e H(): v(xi) 0, il,...,nl. Also, let (a,b) be

a finite interval. For each integer s a 1, let EoB(a,b) denote

the Sobolev space of functions on [a,b] whose s-1 derivatives

are absolutely continuous and vanish at a and b and whose s th
* 2s

derivative is in L (a,b). The inner product on H0(a,b) is

defined by

<u,v> b u ( s ) (t)v ( s ) (t)dt,

where u denotes the sth derivative. It is well known that

H(a,b) is a RKHS with the above inner product and integration

over (a,b) is a continuous operation (Lemma 2.1 of

De Montricher, Tapia, and Thompson, 1975).

s
Corollary 3.1. The M'LE corresponding to H0(a,b) with *(v) =

2<v,v>- llvilt exists and is unique.

As a special case of Corollary 3.1, we can consider the HPLE

of a lifetime density f over a finite Interval 10,T for

very large T > 0 based on an arbitrarily right-censored sample

00
from fo The NPLE exists and is unique In R0(0sT) writh

%*'P .i°. m . • e . • • "o's* t, . . ... ~ o°. . t .... . . . . i. . ... . . . . .
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penalty(a 2ucinO) f
penalty function [(v) - (t)2 dt. The extension to [Om)

is considered in the next section.

&. THE FIRST ESTIMATOR OF GOOD AND GASKINS UNDER CENSORING

For complete samples, Good and Gaskins (1971) considered the

penalty function
-% [v(t)]2  -

(v) - a -f_, [v(t) dt,

for a > 0, which is equivalent to

i '." $ ( v = 4 a J - L d ( v ( t) 2 d t

De Montricher, Tapia, and Thompson (1975) indicated that the

underlying manifold for the MPLE with this penalty function should

'be vh ( , where H (-40,-) is the Sobolev space of func-

tions f: R - R such that the first derivative f' exists almost
2

everywhere and f,f' e L (-,-) with inner product

<f,g> f f(t)g(t)dt + f f'(t)g'(t)dt.

Letting u - , we have the penalty function

2(u2  4aj [u'(t)1 2dt, u c ( I

This substitution avoids the nonnegativity constraint in problem

(2.1).

-4 For the data (xi,di), i-l,...,n, described in Section 2, we -

now would like to maximize
Lu n [u2 (x)]di[j  u

2(t)dt 1-dI 2
.," L(u) - i] ep(-4 11-'l2)

Since L(u) > 0, maximizing L(u) is equivalent to maximizing

L(u) " [L(u) . Thus, we have the problem:

n 2 (1-d )/2
Maximize L(u) "1 lU(X 1  1)]d L u2(t)dtl 1  exp(-2 u 2I1 2)

. subject to u2 (t)dt - .(4.1)

%
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Lettin~g J(u) mIn L(u), problem (4.1) is equivalent to:

MIaximize 3(u). di I n U(xi)

n 1 2
+ X (1-d )lnjf u2 (t)dt] 2czjrju' (t)12 dt
I- Z

(4.2)
subjc t Ju 2(t)dt . 1.

Theorem 4.1. Problem (4.2) has a unique solution in the set

S {u c Hl-,) J u2(t)dt _ B

*Proof: Taking Fre'chet derivatives of 3(u) gives

J, (u) (n) d, 7~(- (- c u'(t)n'(t)dt,
* V~ 2ux ) J(x )

where U (x) f~ u2 an
2 i (t)dt,an22 2 U2 x±.

2 2 2

-4aj [n,(t)]2 dt.

Since J"(u(rwir) < 0 for 'n 0 0, 3(u) is negative definite.

Hence, J is strictly concave, and by Theorem 2, page 160, of

Tapia and Thompson (1978). 3(u) has at most one maximizer in

the set

B' - fu H u2(t)dt S 1}.

0If J(u) is continuous on S', by Theorem 4 on page 162 of

Tapia and Thompson (1978). J will have at least one maximizer

in S'.
1

Since H (-~') is a 1RXHS, if u -p u as m -~~in

B1 (-4D -), then u (xi *U(X) for each iml,...,n. Also,

il u - ujl 0 as M implies, by definition of the norm in

Furthermore, for any f ixed constant c, U 2 (t)d J- u2(td

as~mm) tHatce J:lu -9 R1 is condIuo,us 2 Thrfoe 0 as

V.

.
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has a unique maximizer u in S'.
Next, suppose that uSince 0 as

t - m, then u,(t) and u;(t) both converge to zero as t .

Thus, there exists a number M such that u,(t) 1 for t> M.

Consider a function v,(t) defined so that (i) v,(t) - u,(t)

for t 5 M, (ii) v,(t) > u,(t) for t > M and _. v2(t)dt - 1,
and (iii) [v:(t)] 2 S [u;(t)]2  for t > M. Then by (i) and

(iii), f_,[V(t)]2 dt - fM ul(t)] 2 dt and
JM [u(t)]2dt > H[v;(t)] 2dt. Also, by (ii), for each xi,

,/ 2 2.
.".... "1, ,n, j v,(t)dr • .v u 2(t)dt. These results imply that

J(u,) < J(v*), a contradiction, since u, is the unique maximizer
of J in S'. Therefore, r_.u ,(t)dt * 1, completing the proof.

/0/
Now, we assume that f is a lifetime density on the half-

line R. - (0,-) and use a s)=Metry argument about zero to obtain
0the results for f . Thus, assume that the censored sample

(X.,. (X,,i-l,...,n, is such that X > 0 with probability one,

Then the problem (4.1) becomes:
A n d 2 1(1-d )Maximize L(u) 11 [u(x.)] [ u2(t)dt]

i-li

xexp [-2a0 (u' (t)) d], (4.3)

where xi • 0, l,...,n, 0u2 (t)dt =1, and u(t) 2 0, t > 0.

Let X X and dI = il,...,n, and define

u(x) - u(!xl) for x c R\{01 and ;(0) * lim u(x). Then

define the following problem:

Maximize n [xn d t ;2(t)dt]1(1-di

x-. ,exp[1-2o ('t) ) t, (4.4)
_=;2 2

where (t)dt 2 and u s Eag E H=(z) (-x)

Notice that L(;) - [L(u)] 2 . Also, S Is equivalent to the

Sobolev space H (0,W).

4,.'.. .. .t...... .. ... .... ..- - - - - -?.. . . . . . . . . .*."
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Preposition 4.2. if u* solves (4.4), then u*(t) u*(t),

t a 0, and u*(t) - 0, t c 0, solves (4.3). +()

Proof: Suppose u* solves (4.4). Since L(u) [L(u)]

and u* is symnetric about zero implies that J0 [u*(t)]2 dt - 1,

u solves (4.3). ///

From Proposition 4.2, the "first HPLE of Good and Gaskins"
2

under arbitrary right-censorship will be given by (u*) (t). We

next show that this solution exists and is unique,

Theorem 4.3. Problem (4.3) has a unique solution.

Proof: H defines a closed convex subset of H(-ma).

Thus, by a proof similar to that of Theorem 4.1, problem (4.4)

has a unique solution. By Proposition 4.2, u is the unique

solution to problem (4.3). //

The next theorem shows that the MPLE from (4.3) has the

general form of an exponential spline with knots at the observed

data points.

Theorem 4.4. The unique solution u* of problem (4.4) is an

exponential spline with knots at the observed values xi s

i=+l ,+2...,+n.

Proof: For gliven A > 0 and a in (4.1), let A(u) =
2af_ [u'(t)] 2  + X_ u2(t)dt and consider the problem:

n d h(l-d1)
Maximize L (u) - TI [;(xl)] [ u2(t)dtJ

. ' x exp[-0x ] (4.5)

subject to c H and Z2 u(t)dt -2.

* The inner product <u,v> - 20tu' (t)v'(t)dt + AJ',_u(t)v(t)dt

defines a norm ll2lI - *x(u) equivalent to the original norm on

S(,m). Let vf denote the representer in the *-inner

product of the continuous linear functional given by point evalu-

ation at z i , that is <vin>X an(x i ) for all n e R(-W,.),

-. 4

- ° # " *" *' ° % ° "* "- ". • " -. * * e . . . V * - .. . i. .
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Let S - {vf E S v(X i ) k 0). Then S is closed and convex.

Letting J) - in L., we have the first and second Fr~chet

derivatives,
:-° ± -]~(~i) ' i -Cp

lil-i u(x ) li1-1 f~± U(i
--"n d (x n u(x )V,>

"li,,l :(x) :I(l i) (x i 2

where U2 (x 1 ) -- 2 (t)dt, and

Ji(uI ; i )  W 2 ±

n d 2<i)v (xi) ]___ _)

-i~ (i-d±)l(x±)f(x) 2<n>

Thus, due to the nonnegativity of the functions, -J > 2 I1r 112

so that - is uniformly positive definite relative to S, This

implies that -JA is uniformly convex on S. Therefore, if we

can show that JA is continuous on S. by Theorem 6, page 162

of Tapia and Thompson (1978), JA wiii have a unique maximizer

in S.

-' By an argument similar to that in the proof of Theorem 4.1,
if u -eu in as m- mthen J-(;) -* u(x) for each

ai snd IIu - uIIl * 0 a.s ,, + -. Th us IIu3 - uI12 * 0 as
m - and as before, for any fixed constant c,

where(U (X (t~d-2

cm(~d u ( 2t)dt as m +-~. In particular, for c

n [U xxi'2(,)

thsconvergence holds. Therefore, JA is continuous on S, and

has a unique maximizer uA  in S.

6Now, at the solution k, we must have the gradient of J

vanish, that is,u v

*VJ (uQ) = --dtv n~ (id )(x v0i1- ux(xi) i l-) 2()

where U2 (x) t ef n ie(t)dt, hence,

Xi

n .

and~~~~ *' V;II -0 a -- Tu 12 0 a
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- 1 v n A(x )vi
u)[, ~ 2 {(1-d ) U ,(x1) (4.6)

In order to obtain the form of vi  in (4.6), from

.<vi->, - z(1i), we have

2a.r v1(t)rn'(t)dt + )f v (t)n(t)dt - n(xi) . (4.7)

Integrating the left-hand side of (4.7) by parts (in the distri-

bution sense) gives

-2acJr)()v'(t)dt + Xrf vi(t)n(t)dt - n(xi)
or

.vi(t) -2av"(t)]n(t)dt = J i6(t)n(t)dt,  (4.8)

where (t) = 60(t-xi) and 6 denotes the Dirac delta function,
0 0

that is, t_ %0(t)n(t)dt - I(0). Equation (4.8) is equivalent to

the differential equation

Xv (t) - 2av"(t) - 6W(t) (4.9)
i ii

which, for 10, has the solution

vo(t) -(2aX) -  exp[-(XItl], t 0 0.

Nov, vi(t) - V0 (t-xi) + V0 (t+xz) solves (4.9), Substituting

into (4.6) gives the unique solution u. in the form of an

exponential spline,

SU(t) - 2-(2cIX) -  { di

+ eXp(-(/i2(a)h'jt+. 1i) -n (1-d);l )

U2 (z expC- 2m))t-xi

+ ,zp ((/2cL) t+,iI) ) " (4.10)

Now, notice that over the constraints in problem (4.4),

* problems (4.4) and (4.5) have the same solution for any X > 0

S,"
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since j, u2(t)dt is constant. We need to show that the unique

solution to (4.4), u*, is also an exponential spline.

Let 9(;) ; 2 (t)dt and
n n

G(u) d -n (x) + (1-di)n U2 (x)

- 2a t..[ ,(t) 2dt.

Then from Lagrange multipliers, there exists N so that u*

satisfies the equation

G'(u) - Xg'( ) - 0 and g(;) 2,

n d T)(x) n TI(xi)u(xi) - 4". '(t)n'(t)dt

- 2XJ' E(t)n(t) - 0. (4.11)

Using L2 gradients in the sense of distributions, (4.11) is

equivalent to

l iu - (x U2 (zi) + 4u" - 2) - 0

and g(u) = 2. (4.12)

Since (4.4) has a unique solution, (4.12) must also have a unique

solution in HS, namely u*.

Now, if X S 0, then any solution of the first equation in

(4.12) would necessarily be a sum of trigonometric functions and

would not satisfy the constraint g(u) - 2 since the integral

g(u) would not exist. Thus, Xk > 0. Also G(u) - g() -

( so that ;* must solve (4.5) for this X and therefore

has the desired form, an exponential spline with knots at the

data points. Hence, the proof is complete. /I

The unique solution to problem (4.3) is then u;(t) -*(t),

%t > 0, from (4.10). Bence, the "first MPLE of Good and Gaskins"
-2

Is (u+ )

I#
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5. CONCLUSION

.. In this paper we have shown the existence and uniqueness of

the MPLE of a density function in an appropriate general mathe-

matical setting, based on arbitrarily right-censored observations

from that density. For the first penalty function of Good and

Gaskins (1971), the existence snd uniqueness of the MPLE of the

density function on (0,-) was also shown for this type of data.

*-" This "first MPLE of Good and Gaskins" under arbitrary right-cen-

soring was shown to be in the form of an exponential spline with

knots at the observed censored and uncensored values. These

results are analogous to the complete sample case, except that the

form of the penalized likelihood, and therefore, the MPLE, is

complicated by the terms involving the survival function,

": Statistical properties of the NPLE under censoring have not

. been considered here. The consistency and other statistical re-

sults will be investigated in a later paper.
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